

Bootstrap of the Debian ppc64el port:
History, Concepts, Techniques, and Challenges

Mauricio Faria de Oliveira
<mauricio.foliveira@gmail.com>

Linux Developer Conference Brazil
August 26th, 2018

This author/material does not represent any company/group or its views.

mailto:mauricio.foliveira@gmail.com

Contents
● Challenges

– Source packages change quickly

– Build dependencies: circular/cyclic

– Build dependencies: recursive/self-hosted

– Build problems: libtool, autoreconf

– Rebuild The World, twice (ABI, GLIBC)

– Small team of non-Debian developers

● Timeline – from dpkg arch to release!

● History

– Why little-endian 64-bit PowerPC?

– Why Debian on little-endian 64-bit PowerPC?

● Concepts

– What is the Debian ppc64el port?

– What is bootstrap?

– Overview of bootstrap process

● Techniques

– QEMU/KVM, powernv & pseries platforms

– Cross build on Debian powerpc port

– git repo: scripts, patches, workarounds

– Part 0: prepare build/host environment

– Part 1: build cross toolchain

– Part 2: build enough to boot and build

– Part 3: build enough to build the toolchain

– Part 4: build more

Bootstrap of the Debian ppc64el port:
History, Concepts, Techniques, and Challenges

History: why LE 64-bit PowerPC?

(2 reasons – these are my views; facts might relate; who knows it all? :-)

So, back in ~2013 (and earlier years)...

Note on the word traditionally – IBM PowerPC-based servers have existed

for a long time, and for most of that, used to be adopted in / focused on

“enterprise” scenarios

(e.g., more static/scale-up, CPU/MEM workloads, storage, networking).

before the ”cloud”-enterprises actually started

(e.g., more dynamic/scale-out, all sorts of workloads, incl. accelerators).

The word traditionally refers to the former, longer period of time.

History: why LE 64-bit PowerPC?

1) Linux on IBM PowerPC-based Servers (a.k.a. Linux on Power)

traditionally ran on a “diferent” environment/confguration

than x86_64 or standard things of scale-out computer industry.

(or “weird” or “esoteric” as some have said – more fun adjectives)

● Necessarily virtualized (i.e., no bare-metal mode) – OK for some, but

● As LPARs (logical partitions, a.k.a. “guests”, “VMs”) – what?

● In the PowerVM hypervisor (proprietary) – OK for some, but

● Non-”standard” tools/interoperability (HMC for LPAR/system/hardware
management – no IPMI, libvirt/XML, not easy to interact/automate) –
“how do I do <something> here?” (it used to be very “diferent”).

History: why LE 64-bit PowerPC?

2) The processor wars (technology battle on CPU clock, cache, pipeline,

instructions per cycle, latency/throughput, speculative execution, etc.)

were considered “done” and did not pay of (high investment, low return).

Computer industry going through changes.

From processor-level performance (CPU/MEM, clock/cache/bandwidth)

To system-level performance (e.g., that + I/O adapters, accelerators/GPUs)

History: why LE 64-bit PowerPC?

But, traditionally, Power servers did not have such range of I/O support.

(e.g., storage/networking for sure, but no GPUs nor many accelerators)

● Endianness (big-endian) made it difcult (at least for GPUs)

● Proprietary I/O bus technology (GX++ iirc) made it difcult

● More complex software/hardware interaction
limited by virtualization requirement/no bare-metal mode
made it difcult

● Needed to attract more I/O vendors to the platform

History: why LE 64-bit PowerPC?

So, something happened, ultimately directed at an open ecosystem

for both hardware and software.

● OpenPower Foundation (initially IBM, Google, NVIDIA, Mellanox, Tyan)

● Partnerships in hardware (licensable hardware/POWER8, designs, etc.)

● And software (more industry “open”/”standard”/”compatible” ways)

Then, in that direction,

● Linux scale-out ecosystem (bare-metal, KVM, libvirt, IPMI, BMC,
lots of modern programming languages, cloud environments, etc)

● Little-endian 64-bit PowerPC (with the ELFv2 ABI)
(software/hardware portabilibity, specially GPUs back then.)

History: why LE 64-bit PowerPC?

OK, great! So let’s do little-endian 64-bit PowerPC!

(endianness: the order in which the individual bytes of multi-byte words

are read from / stored to memory – least or most signifcant byte frst.)

These PowerPC processors are bi-endian (can run in either LE/BE mode).

So we just change the endianness mode bit in this processor register, and...

PowerISA v2.07B

History: why LE 64-bit PowerPC?

Uh-oh.

There is no software than runs on it.

(multi-byte memory access is now “wrong” for existing software, thus incompatible.)

Now this is a new architecture!

OK.

And let’s run Debian on it too.

Start the Debian ppc64el port.

https://www.debian.org/logos/

History: Why Debian?

Ecosystem / Community / Business

1) Debian is one of the favorite Linux “community” distributions

for both development and production systems (good for OpenPower).

2) Ubuntu (based on Debian), similarly (community/devel/production),

and very famous in the cloud space (strategic imperative/move for IBM).

3) Ubuntu has customer support by Canonical; partnership with IBM

for a new Linux distro supported on IBM PowerPC-based servers

(traditionally, only RHEL and SLES).

Bootstrap of the Debian ppc64el port:
History, Concepts, Techniques, and Challenges

What is the Debian ppc64el port?

The Debian GNU/Linux distribution (e.g., package archive, installer, infra, ...)

ported (i.e., patched) to the little-endian 64-bit PowerPC architecture.

This architecture runs on IBM / OpenPower servers with the IBM POWER

processors (i.e., IBM POWER8 and later); potentially on non-IBM chips too

(manufactured by other members/companies in OpenPower foundation.)

Also known as:

- powerpc64le in platform triplets (CPU feld; e.g., powerp64le-linux-gnu),

- ppc64le in `uname` machine hardware name,

- ppc64el in `dpkg` architecture.

What is bootstrap?

“A looped strap [...] on a boot to help pulling it on.”
(Merriam-Webster Dictionary; noun)

“A means of advancing oneself [...]”

“Self-generating or self-sustaining”

(Dictionary.com; adjective)

https://en.wikipedia.org/wiki/Bootstrapping

What is bootstrap?

Computer thing:

Process to (incrementally) build and run software

for/on a computer for which there is no software.

What is bootstrap?

Computer thing:

Process to (incrementally) build and run software

for/on a computer for which there is no software.

That is, from the scratch, in incremental steps.

What is bootstrap?

Computer thing:

Process to (incrementally) build and run software

for/on a computer for which there is no software.

That is, from the scratch, in incremental steps.

(er, from a computer for which there is software.)

(er, target computer for which there is basic boot.)

What is bootstrap?

Example scenario:

You have a brand new computer.

That runs a brand new computer architecture (e.g., diferent instructions).

And there is not (yet) any software that can run on it.

And other computers cannot (yet) build for it.

You have to start over.

All over.

What is bootstrap?

Example scenario:

You have a brand new computer.

That runs a brand new computer architecture (e.g., diferent instructions).

And there is not (yet) any software that can run on it.

And other computers cannot (yet) build for it.

You have to start over.

All over.

Build it all -- toolchain, kernel, userspace, applications.

You can only build with what you built. One step at at time.

Overview of bootstrap process

1) Cross Toolchain

First of all, you have to generate (executable) code.

- to the new architecture

- from an existing architecture.

This requires a cross compiler.

(actually, cross toolchain -- compiler, assembler, linker, ...)

Overview of bootstrap process

1) Cross Toolchain (terminology)

A toolchain is built on a build architecture,

it runs (i.e., builds) on a host architecture,

its output runs on a target architecture.

On a “normal” toolchain (native/(ly) built), all architectures are the same.

(For example, built, builds, and run on x86_64 or powerpc).

On a cross toolchain, some architectures are diferent.

(For example, built and builds on x86_64 or powerpc, run on powerpc64le.)

Overview of bootstrap process

1) Cross Toolchain

(frst, enable/patch it – a lot of work, not covered here.)

So, build a cross toolchain (build == host != target)... more details soon.

Once you can generate code for the target architecture,

You can start to think about how to run it.

This requires building an “environment” similar to existing architectures

(that is, general purpose environments, not special purpose/without OS.)

Overview of bootstrap process

2) Cross compile the Kernel

(frst, enable/patch it – a lot of work, not covered here.)

Well,

frst you boot a kernel,

then you can run userspace/applications.

So, cross compile the kernel frst.

Overview of bootstrap process

3) Cross compile Userspace

So, the kernel boots and hands it of to userspace

(initramfs, init system, login, shell, tools, applications, ...)

So, cross compile “userspace” (a lot of stuf).

Overview of bootstrap process

3) Cross compile Userspace

Er, but just enough of it for now (cross compiled).

Once you reach an environment you can actually use (e.g., shell, tools)

You want to build and run in native mode (not cross compile).

Because then you can run test suites (e.g., `make check`)

and hit/fx errors as early as you can (so they don’t to propagate; e.g., libs).

And restart it all (rebuild the world) if required (e.g., toolchain changes).

Overview of bootstrap process

4) Native Toolchain (cross compiled)

You want to build natively, but there is not yet a native toolchain.

So, cross compile a native compiler/toolchain (build != host == target).

What? It’s confusing at frst.

The cross toolchain generates code that runs on the target architecture.

It just happens that code is another toolchain that also does it there.

So you can run a compiler/toolchain in the new environment.

Overview of bootstrap process

5) Native Toolchain (natively compiled)

You already have a cross compiled native toolchain.

Now build a natively compiled native toolchain (build == host == target).

Because you are not so sure (yet) about the new toolchain...

Whether it runs correctly in the new environment (e.g. bit/endian-ness).

Whether the new environment runs it correctly (kernel/shell/libraries).

Besides, building a toolchain exercises the new environment (a lot).

Useful to hit/fx errors (more of them), ensures things are OK early on.

Overview of bootstrap process

6) Build the rest (userspace/applications)

It seems simple, doesn’t it? :-)

You have a toolchain, you have the source code.

Now this should be just “normal”, right?

Well... not really.

Overview of bootstrap process

6) Build the rest (userspace/applications)

Building stuf just “normal” requires a “normal” environment:

● build dependencies available (incl. circular ones) when you build it,

● and (install/run-time) dependencies available when you install/run it.

When those are not available... there are quite a few tricks, hacks,

incremental builds (of the same package(s)), and unique procedures

to build/install/run stuf... in order to satisfy the dependencies.

This is a real nightmare challenge adventure! ;-)

Bootstrap of the Debian ppc64el port:
History, Concepts, Techniques, and Challenges

QEMU/KVM, powernv & pseries

The very frst thing..

An early version of the OPAL frmware (OpenPower Abstraction Layer),

for POWER7+ systems (not publicly available, only with legal agreement),

which were available for the development teams (POWER8 not there yet).

It allows the system to boot/run in bare-metal mode (and run KVM guests!)

as an alternative to the PowerVM hypervisor (in LPAR/virtualized mode).

The bare-metal “platform” name is powernv (non-virtualized),

provided by the OPAL frmware, capable of running KVM guests.

The virtualized “platform” name is pseries (power),

provided/emulated by QEMU, as in the PowerVM hypervisor.

This provided backward-compatibility for existing Linux distros

(and most of the software) supported on BE 64-bit PowerPC,

originally under the PowerVM hypervisor (pseries), now under QEMU/KVM.

VM: faster dev/test/crash/reboot/debug cycles – good for development.

QEMU/KVM, powernv & pseries

KVM guest running the Debian powerpc port (BE 32-bit), on top of

KVM host running Fedora/powerpc64 (BE) with patched kernel/qemu/etc.

This is used to cross build a minimal native build/host environment.

Reasons for Debian as (cross) build/host environment:

- maximize patch reuse (e.g., toolchain/pkg builds on build/host and target)

- minimize diferences between build/host and target environment

- simpler/more common build scripts (e.g., dpkg, apt, etc.)

Cross Build on Debian powerpc port

1) Build scripts

● Part 0 (cross): Prepare build/host environment (dpkg arch/multi-arch)

● Part 1 (cross): Build cross toolchain

● Part 2 (cross): Build enough to boot and build (natively)

● Part 3 (native): Build enough to rebuild the toolchain (natively).

● Part 4 (native): Build more (buildd, missing build deps, FTBFS, etc.)

2) Patches

● pkg/.patch fles – source code changes (i.e., endianness/abi fxes)

● pkg/.debpatch fles – packaging changes (i.e., fles in the debian/ dir)

git repo: scripts, patches, workarounds

3) Workarounds

● Variables for per-package workarounds: $<pkg>_deps|vars|version

● $<pkg>_deps: remove specifc build dependencies
● $<pkg>_vars: export environment variables during build
● $<pkg>_version: specifc source code version to build (e.g., simpler)

● Multiple package build stages: <pkg>_stageN
(the “_” char is not allowed in Debian package names; used here as separator)

● Diferent build stages for diferent workarounds (decreasingly)
● Variables: $<pkg>_stageN_deps|vars|version

● Package array: pkgs=(pkg1 pkg2_stage1 pkg3 pkg2 ... pkgN)

● Package build loop: for pkg in $pkgs; do <patch/work’d/build $pkg>; done

git repo: scripts, patches, workarounds

Steps:

1) Build/Install dpkg with patch to add ppc64el architecture

2) dpkg –add-architecture ppc64el
(multiarch – to support installing target packages on build/host system)

3) dpkg-architecture –host-arch ppc64el
(DEB_{BUILD,HOST,TARGET}_* env vars for the cross binutils/gcc & glibc)

4) Package repository for target packages

Part 0: prepare build/host environment

Steps:

1) binutils (assembler, linker, etc.)

2) gcc stage 1 – gcc to build the glibc headers/start fles only

it does not need glibc

it can build parts of glibc (not the complete glibc)

3) glibc stage 1 – glibc to build the gcc that can build the complete glibc

it is headers and start fles (C runtime)

it needs kernel headers (C types, system calls, errno, threads, etc.)

4) gcc stage 2 – gcc to build the complete glibc

5) glibc stage 2 – complete/fnal glibc

6) gcc stage 3 – complete/fnal gcc that can use/link to complete glibc

Part 1: build cross toolchain

Suggested reading:
https://crosstool-ng.github.io/docs/toolchain-construction
https://developers.redhat.com/blog/2014/12/19/bootstrapping-power8-little-endian-and-common-pitfalls/
https://www.airs.com/blog/archives/492

https://crosstool-ng.github.io/docs/toolchain-construction
https://developers.redhat.com/blog/2014/12/19/bootstrapping-power8-little-endian-and-common-pitfalls/

The deboostrap tool installs a basic Debian suite in a dir/ from a package repository.

Next steps come from its package-set variants and the package install order/errors.

cross-env # debootstrap \

 --arch=ppc64el \ (set target architecture)

 --foreign \ (unpack only, do not confgure/run anything; see --second-stage)

 --variant=minbase|buildd|<skip> \ (essential+apt | build-essential | base install; fix errors)

 --include=... \ (dhcp, ssh, vim, curl)

 unstable \ (package suite/release)

 ./rootfs \ (mount point for disk image to boot)

 fle:///pkg-repo (package repository)

native-env # /debootstrap/debootstrap –second-stage (confgure packages)

Part 2: build enough to boot and build

Prepare environment to boot:

● Create disk image fle (dd if=/dev/zero of=rootfs.ext4 ...)

● Create its flesystem (mkfs.ext4 -F rootfs.ext4)

● Mount it (mount -o loop ...)

● Create /etc/inittab to run a frst-boot script

● Create script (remove itself, run debootstrap –second-stage, set password, powerof.)

● Get a kernel image

● Boot kernel + disk image with qemu-kvm (frst-boot sets environment up)

● The native environment (disk image) is ready.

● Boot it and go build more stuf!

See wiki.debian.org/ppc64el/Installation for details.

Part 2: build enough to boot and build

Now that the native environment is ready and usable...

Build the build-dependencies of the toolchain packages, and build it.

Install it so it’s used as the default toolchain (and update the disk image).

Part 3: build enough to build toolchain

What to build now? Where to go?

The Build Daemon (buildd).

It automatically builds packages, and reports failures:

● Missing build dependencies

● Problems installing build dependencies

● Other problems during build (FTBFS – fail(ure) to build from source)

Set it loose (build/following Debian Archive news) and fx the errors it reports.

Initially internal/downstream, using our patches and package repository.

Later, using our package repository for build-deps only, build from Debian sources.

Part 4: build more...

Bootstrap of the Debian ppc64el port:
History, Concepts, Techniques, and Challenges

During the early bootstrap process, with a smaller team,

it was hard to keep up with the changes in the Debian archive

(unstable/sid sources, it’s where we had to live on).

Changes like (build) deps versions broke our repository.

Changes like code update/rebase broke our patches (internal-only then).

Some packages stop installing. (bad, but a rebuild may fx it.)

Some patches stop applying. (worse! work required to rebuild.)

Source packages change quickly

The workaround used is snapshot.debian.org as source/binary repository.

This allowed us to stick to source code/deps of a given point in time.

And port consistently (without breakages), until ready / good enough

to update to a more recent snapshot.

Eventually, with buildd, we moved to the rolling archive / non-snapshot.

Source packages change quickly

For example..

Let’s build Package A.

Package A build-depends on Package B (i.e., to build A, you frst must build/install B)

Ok, let’s build Package B frst.

Package B build-depends on Package A.

Ok, let’s build Package A frs..

Eh? Package A again?! Uh-oh.

Build deps: circular/cyclic

In bootstrapped architectures, all packares are available (e.g., previous versions).

In bootstrapping/new architectures, that is not the case.

That is a trivial example (but it happens).

Some packages might get very complex to analyze and resolve

● Introduce more packages: A -> B -> C -> D -> (...) -> A

● Inner loops / multiple circular build-deps: A -> B -> C -> D -> C -> (...) -> A

Build deps: circular/cyclic

The workaround is to identify and remove not strictly required build deps

(e.g., packages that do not cause build failures, just a “no” in ./configure),

then build both packages, and rebuild the frst (build deps available now.)

packages=(

 pkgA_stage1 # build A without B

 pkgB # build B

 pkgA # rebuild A now with B

)

pkgA_stage1_deps=”pkgB” # remove pkgB from build-deps of packageA

build $packages

Build deps: circular/cyclic

It happens that a package build-depends on itself.

For real; a strictly necessary build-dep; can’t remove it.

This is the case with several programming languages.

For example, compiler of language X is written in language X.

So, it needs a compiler of language X to build (i.e., self-hosted).

Build deps: recursive/self-hosted

The workaround(s) for that are usually more difcult.

It might involve one or multiple steps:

● Build a simpler version, and use that to build a better one. (e.g., gcc, glibc)

● Inject an externally/manually built binary, and ignore build-deps.

● Build the compiler using alternative compilers (real example!)

Build deps: recursive/self-hosted

Build the compiler using alternative compilers (real example!)

– Target: OpenJDK Java 1.7, needs “Java” 1.7 (not necessarily OpenJDK)

– Step 1: Use GCC to build GCJ for Java 1.5 (GNU Compiler for Java)

– Step 2: Use it to build GCJ/1.6 (or OpenJDK Java 1.5 ?)

– Step 3: Use it to build GCJ/1.7 (or OpenJDK Java 1.6 ?)

– Step 4: Use it to build OpenJDK Java 1.7

Build deps: recursive/self-hosted

Several packages depend on libtool to detect the architecture,

and confgure the respective build options, etc. for libraries.

Several packages ship their own (outdated) copy of libtool fles, and use it.

This led to several problems (not always seen as build errors, unfortunately)

when the package did not detect the little-endian architecture correctly,

and fail to build a shared library in big-endian mode (thus disable building it).

Usually, the problem is shared libraries missing; not all packages build-check.

Build problems: libtool, autoreconf

The solution is to run autoreconf, which uses the (updated) system libtool.

There is even a debhelper option to do that automatically.

However, some packages fail to build with that.

(e.g., need other fxes, depend on older versions of something.)

One workaround is to patch just the lines to detect ppc64el right.

Another workaround (never upstream) is a linker patch, to force linkage

in little-endian mode even if big-endian mode is specifed (LD_FORCE_LE=1).

Build problems: libtool, autoreconf

Rebuild the world means to rebuild everything, to start over.

It usually happens in case of changes to the toolchain, ABI, C library

that afect all software that has already been built.

We did that twice.

You should have most of your bootstrap process automated.

Just saying.

Rebuild the World, twice: ABI, GLIBC

First time: the introduction of the ELFv2 ABI for LE 64-bit PowerPC.

The ELFv1 ABI, used in BE 64-bit PowerPC, dated 20ish years ago.

Designed in diferent paradigms for programming languages, programs,

even the hardware itself (e.g., long running loops, long functions, few calls).

More recent software/programming languages are more modular/shorter.

But it cannot change so not to break ABI compatibility (20ish years/programs).

Hey! The LE 64-bit PowerPC was totally new, no software built and published.

The ABI could change!

Rebuild the World, twice: ABI, GLIBC

The ELFv2 ABI, used in LE 64-bit PowerPC, builds on top of the ELFv1,

with some changes to address modern programming languages, shorter

and more functions, smaller stack size, and a lot of cool stuf.

The initial “build the world” used the ELFv1 ABI,

so to validate toolchain/libc/kernel/etc changes

for endianness, platform, frmware, etc (a lot of stuf already) alone.

The frst rebuild the world used the ELFv2 ABI,

once the components were considered good enough/stable.

Rebuild the World, twice: ABI, GLIBC

Second time: the change in GLIBC start version for LE 64-bit PowerPC.

This symbol is carried in executables/libraries that use the C library (“all”).

The Linux distros initially supporting LE 64-bit PowerPC (Ubuntu, SLES)

used GLIBC 2.18, but later RHEL joined too! and it used GLIBC 2.17.

In order to keep binaries compatible/consistent across the architecture,

that version number had to change. It was a bigger problem as some

Linux distro(s) had to rebuild the world too, due to another Linux distro.

Cool patches from RedHat to “fake” GLIBC version on (re)build/run-time!

Rebuild the World, twice: ABI, GLIBC

Our whole team (< 10 always) had little to no experience with Debian at all.

It’s been a great and hard learning time, with help from Debian community.

Later on, around the end of 2013, the people at Canonical involved in the

bootstrap of Ubuntu Server 14.04 for ppc64el, who had plenty and great

experience with Debian, took a good share of the work in many packages.

This helped tremendously.

They helped us with upstreaming our work to Debian (new process to us),

and we helped with upstreaming to Debian for them too, later on.

Several Debian community/maintainers were very supportive as well.

Small team of non-Debian Developers

Timeline – from dpkg arch to release
● 2013/06/13 (zero): internal: patch adds ppc64el to dpkg/cputable

● 2013/08/06 (~2mo): debian: patch adds ppc64el to dpkg/cputable [1]

● 2013/08/26 (~2mo): IBM: POWER8 announce: Hot Chips conference [2]

● <lots of work at IBM, Debian community, and Canonical>

● 2014/04/17 (~10mo): ubuntu-announce: Ubuntu Server 14.04 LTS [3]

● 2014/06/10 (~12mo): IBM: POWER8 general availability [4]

● 2014/06/12 (~12mo): debian/linux: patch adds ppc64el kernel support [5]

● 2014/08/27 (~14mo): debian-devel-announce: ppc64el in unstable [6]

● 2014/09/12 (~15mo): buildd.debian.org/stats: ppc64el builds 90%+ of archive

● 2014/09/26 (~15mo): debian-devel-announce: ppc64el in testing [7]

● 2014/10/05 (~16mo): debian-devel-announce: ppc64el in debian-installer [8]

● 2015/04/26 (~22mo): debian-announce: ppc64el in Debian 8 “Jessie” release [9]

[1] https://bugs.debian.org/718945
[2] https://www.hotchips.org/archives/2010s/hc25/
[3] https://lists.ubuntu.com/archives/ubuntu-announce/2014-April/000182.html
[4] https://www-03.ibm.com/press/us/en/pressrelease/44123.wss
[5] https://salsa.debian.org/kernel-team/linux/commit/57356b0a9edf
[6] https://lists.debian.org/debian-devel-announce/2014/08/msg00012.html
[7] https://lists.debian.org/debian-devel-announce/2014/09/msg00002.html
[8] https://lists.debian.org/debian-devel-announce/2014/10/msg00002.html
[9] https://lists.debian.org/debian-announce/2015/msg00001.html

https://www-03.ibm.com/press/us/en/pressrelease/44123.wss
https://lists.debian.org/debian-devel-announce/2014/08/msg00012.html
https://lists.debian.org/debian-devel-announce/2014/09/msg00002.html
https://lists.debian.org/debian-devel-announce/2014/10/msg00002.html

Takeaway

“... the obstacles in the path

 are not obstacles;

 they are the path.”

 – Jane Lotter

Bootstrap of the Debian ppc64el port:
History, Concepts, Techniques, and Challenges

Mauricio Faria de Oliveira
<mauricio.foliveira@gmail.com>

Linux Developer Conference Brazil
August 26th, 2018

This author/presentation does not represent any company or its views.

mailto:mauricio.foliveira@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

