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Introduction
Matchmaking worlds with very different views
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Customer Projects
● Project goal is aligned with a business goal
● Has a tightly defined budget
● Has a defined, and usually tight, timeline
● Has a set of acceptance criteria to fulfill
● Constrained by budget, time, quality, scope, 

and business goals

Extra  information 3



Community Project
● Project goal is aligned with a technical goal
● No defined budget
● Some projects will have timelines, others will 

release when done“ ”
● Fluid set of acceptance criteria, no a priori 

definition
● Constrained by quality, time availability of 

contributors, and technical relevance
● All projects are different, get to know them
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A balancing act
● Keep an eye on the budget spreadsheet, and the 

other on the commit log
● Adapt our talking points to these different needs
● Overgeneralizing:

– Community focus is on features and code quality, not budget

– Customer focus is on deliverables and cost, not maintainers’ demands

● Our job is to preserve the health of both our 
project and the community project

● It’s a balancing act, but it pays off if done well
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What we want
● Fulfill customer goals and contribute to open 

source at the same time
● Respect our motto and mission

– “Open first”
– “Accelerate the adoption of open source 

technologies, methodologies & philosophy”
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What we want – cont.
● We want to contribute and get better at it
● If we make a profit, we can continue our 

contributions
● Be fair to our customers and the community
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“Open First”
● Public by default
● Always insist on working in the open. Demand 

good reasons to do otherwise
● Code repository in the open (reference to 

upstream for easy porting)
● Whenever possible, use original project bug 

trackers 
● Caveat: we do always use an internal one for 

internal project tracking
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“Accelerate the adoption of open source 
technologies, methodologies & philosophy”
● Doing our job well, we can demonstrate the 

power of open source to customers
● We work this way because we are convinced 

it’s the most productive and cost-effective way
● We can believe it’s so, but there’s no better 

proof than hard cold numbers
● Profit!
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● If done well, it makes big economic sense, for 
us and our customers

● We use it and sometimes maintain it too
● Other customers build products with it too
● Any patch going in improves the end result
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Some common hurdles
● Customer projects have tight deadlines and 

budgets
● Customers new to open source may not see the 

value in upstreaming
– Fortunately, this happens less and less

● Some kind of education is required to show the 
value of open source and upstreaming
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Some common hurdles – cont.
● Contributing has to fit in the project plan

– Upstreaming as an after-thought is a recipe 
for failure

● Harder to justify in short projects
– Why would they care about long-term 

benefits?
● Or drive-by projects that will never touch a 

project again
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Some common hurdles – cont.
● For service-based companies, every project is a 

race to the bottom line
● We have to break even or we are out of 

business, there’s no cash-cow product to rely 
on

● And without a big marketing budget, our 
reputation in the open source world is our best 
advertising
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How to prepare
● Assess the project

– How much does it overlap with upstream 
projects?

– Is it about new features or customization?
● Assess customer’s attitude

– Willing/able to contribute?
– Undertands open source?

● Project relevance to us
– Drive-by or strategic project?
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Some questions at first
● Ask the customer:

– What license to use?
– Can we upstream the code?
– Can we mention upstream whom we are 

working for?
– Can we mention the project?
– Can we discuss the specific use case?
– Can we mention the hardware?
– Most or all should be in the SOW

●  Any No  adds difficulty to the process“ ”
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Working with No
● “No  to upstreaming code”

– Worst situation, contribution to upstream 
will be minimal and on our own time

● “No  to mentioning customer, project, ”
hardware
– Upstream will lack context on your situation
– Communication gets more difficult

● Basically, any No increases the burden
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Clarify value to customers
● It’s an ongoing task, not a single item in the 

plan
● Coordinating with upstream can result in 

tasks being done by other projects
– Get extra features for free

● Improve long-term maintenance
● Better communication, better insight into the 

future and more influence in direction
● For single projects, it might still be difficult
● Easier when it’s recurrent work
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Clarify value to the team
● Even if not paid by customer, it may be cheaper 

to upstream on our own in the short-term
● Can it minimize development time/cost?
● Can it minimize support cost?
● Document what can not be upstreamed during 

the project but could be done later
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Project management
● Upstreaming is not just one task, is a process
● Try to secure budget for it
● Account for gains and expenses

– Extra features, better support
– Extra effort and time spent upstreaming
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Planning
● Upstream has to be taken into account from 

requirements definition to testing and 
bugfixing

● Allow for feedback times
● Allocate adequate people to the project
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Planning tactics
● Is this feature being worked by someone else?
● Can we join efforts?
● Can we delay part of it until upstreamed by 

someone else, and then add on top?
● Communicate with upstream and nearby 

projects
● Plan contingency if other projects don’t fulfill
● It’s a balancing act
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People allocation
● If possible, get people related to upstream
● Smooth communication is key
● Upstreaming is easier when it comes from an 

existing contributor
– More experience, existing network

● If not, start building a relationship now!
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Planning tactics
● Be creative
● Look at the budget sheet and the calendar

– That includes release schedules
● Negotiate and then negotiate some more:

– “We work on X feature, they work on Y, and 
we both get X and Y at half the cost!”

● Keep the customer on the loop
– After all, any tactic has a risk, and the 

customer must be aware of it
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Communication with upstream
● Code does the best talk
● Quality is important
● No throwing code over the fence“ ”
● Talk is mostly in technical terms. The PM 

should take a step back and let developers 
take lead here

● Context helps on reviews, provide as much as 
possible, within customer constraints

● Build genuine relationships, no pep talk
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Requirements definition
● Will this feature be accepted by upstream?
● If so, can we secure a maintainer to provide 

timely feedback?
● If not, can we define it in a way to minimize 

non-upstreamed patches?
– Tailor it
– Break it down
– Account for increased maintenance costs
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Development
● Be open about dependencies
● Keep in touch with all participants and ask for 

feedback early
● Plan to have one first version that works  and “ ”

integrate a correct  one later after “ ”
upstreaming

● Plan for review and fix times
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Testing
● Consider your project and upstream testing 

requirements
– Testing requirements might be steep for 

upstreaming, have to be planned early
● Leverage upstream CI testbed if it exists
● Integrate early
● Fix issues promptly
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Communication
● Keep a close eye on what upstream is doing
● Keep the customer on the loop for relevant 

features
● Be flexible with the plan, leverage the 

opportunity if there is momentum for a desired 
feature
– “Nothing is more powerful than an idea 

whose time has come”
– Use it to our advantage 
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Communication
● Blog about what we are doing
● Telling we are working on x feature might spur 

interest from other parties
● No public relation stunts, be as transparent as 

possible
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Retrospective
● During the project retrospective, consider the 

upstreaming process
● What can be improved, what went wrong
● Go over the list of non-upstreamed patches
● Highlight the ones that are worth having 

upstream 
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What if you can’t?
● What if we can’t upstream during the project?
● Keep a list of patches
● Whatever we do, try to do it early or patches 

will bitrot quickly
– That is wasted effort for everyone, not good
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Tactics to finish upstreaming
● Is there a sequel to the finished project?

– Can we include this effort in the new 
project?

● Internal company project for upstreaming
– Slowly upstream the most relevant patches

● File and submit the patches upstream
– The attention these will receive depends 

greatly on developers being available
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Tactics to finish upstreaming – cont.
● File and submit the patches upstream

– The attention these will receive depends 
greatly on developers being available

– This is bad, but still better than let them 
bitrot in a forgotten repository
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Examples
● Project based on Debian

– Any fix in a package is submitted directly to 
Debian and then automatically fed back into 
the project from Debian repository

– Upstream is part of the regular workflow, no 
added cost, just a bit extra time
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Examples – cont.
● Android on stock Linux

– Waited for features done for ChromeOS
– Additional fixes required changes in etnaviv, Mesa, 

AOSP
– Discussed with all projects and all upstreams what 

was acceptable
– Worked out schedule, split out work
– Worked on our own part, supported other projects 

with feedback and testing
– Big feature at 1/3 the cost
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Experience pays off
● Upstreaming is second nature to us
● We can quickly point out issues and get to creative 

solutions
● We get contracted to upstream other companies’ work
● Good karma for everyone
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Some Conclusions
● Communicate up, down, and sideways
● Leverage what other projects are doing
● Upstream is a process through the whole 

project
● Show value in upstreaming
● Avoid throwing code over the fence
● Keep track of patches pending to upstream
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Thank you!
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