
Open First

Managing Client’s Projects in
Opensource and Being
Profitable
Making sustainable contributions to opensource

Alvaro Soliverez
Project Manager
Collabora Ltd

Introduction
Matchmaking worlds with very different views

Extra information 2

Customer Projects
● Project goal is aligned with a business goal
● Has a tightly defined budget
● Has a defined, and usually tight, timeline
● Has a set of acceptance criteria to fulfill
● Constrained by budget, time, quality, scope,

and business goals

Extra information 3

Community Project
● Project goal is aligned with a technical goal
● No defined budget
● Some projects will have timelines, others will

release when done“ ”
● Fluid set of acceptance criteria, no a priori

definition
● Constrained by quality, time availability of

contributors, and technical relevance
● All projects are different, get to know them

Extra information 4

A balancing act
● Keep an eye on the budget spreadsheet, and the

other on the commit log
● Adapt our talking points to these different needs
● Overgeneralizing:

– Community focus is on features and code quality, not budget

– Customer focus is on deliverables and cost, not maintainers’ demands

● Our job is to preserve the health of both our
project and the community project

● It’s a balancing act, but it pays off if done well

Extra information 5

What we want
● Fulfill customer goals and contribute to open

source at the same time
● Respect our motto and mission

– “Open first”
– “Accelerate the adoption of open source

technologies, methodologies & philosophy”

Extra information 6

What we want – cont.
● We want to contribute and get better at it
● If we make a profit, we can continue our

contributions
● Be fair to our customers and the community

Extra information 7

“Open First”
● Public by default
● Always insist on working in the open. Demand

good reasons to do otherwise
● Code repository in the open (reference to

upstream for easy porting)
● Whenever possible, use original project bug

trackers
● Caveat: we do always use an internal one for

internal project tracking

Extra information 8

“Accelerate the adoption of open source
technologies, methodologies & philosophy”
● Doing our job well, we can demonstrate the

power of open source to customers
● We work this way because we are convinced

it’s the most productive and cost-effective way
● We can believe it’s so, but there’s no better

proof than hard cold numbers
● Profit!

Extra information 9

● If done well, it makes big economic sense, for
us and our customers

● We use it and sometimes maintain it too
● Other customers build products with it too
● Any patch going in improves the end result

Extra information 10

Why help upstream?

Some common hurdles
● Customer projects have tight deadlines and

budgets
● Customers new to open source may not see the

value in upstreaming
– Fortunately, this happens less and less

● Some kind of education is required to show the
value of open source and upstreaming

Extra information 11

Some common hurdles – cont.
● Contributing has to fit in the project plan

– Upstreaming as an after-thought is a recipe
for failure

● Harder to justify in short projects
– Why would they care about long-term

benefits?
● Or drive-by projects that will never touch a

project again

Extra information 12

Some common hurdles – cont.
● For service-based companies, every project is a

race to the bottom line
● We have to break even or we are out of

business, there’s no cash-cow product to rely
on

● And without a big marketing budget, our
reputation in the open source world is our best
advertising

Extra information 13

How to prepare
● Assess the project

– How much does it overlap with upstream
projects?

– Is it about new features or customization?
● Assess customer’s attitude

– Willing/able to contribute?
– Undertands open source?

● Project relevance to us
– Drive-by or strategic project?

Extra information 14

Some questions at first
● Ask the customer:

– What license to use?
– Can we upstream the code?
– Can we mention upstream whom we are

working for?
– Can we mention the project?
– Can we discuss the specific use case?
– Can we mention the hardware?
– Most or all should be in the SOW

● Any No adds difficulty to the process“ ”
Extra information 15

Working with No
● “No to upstreaming code”

– Worst situation, contribution to upstream
will be minimal and on our own time

● “No to mentioning customer, project, ”
hardware
– Upstream will lack context on your situation
– Communication gets more difficult

● Basically, any No increases the burden

Extra information 16

Clarify value to customers
● It’s an ongoing task, not a single item in the

plan
● Coordinating with upstream can result in

tasks being done by other projects
– Get extra features for free

● Improve long-term maintenance
● Better communication, better insight into the

future and more influence in direction
● For single projects, it might still be difficult
● Easier when it’s recurrent work

Extra information 17

Clarify value to the team
● Even if not paid by customer, it may be cheaper

to upstream on our own in the short-term
● Can it minimize development time/cost?
● Can it minimize support cost?
● Document what can not be upstreamed during

the project but could be done later

Extra information 18

Project management
● Upstreaming is not just one task, is a process
● Try to secure budget for it
● Account for gains and expenses

– Extra features, better support
– Extra effort and time spent upstreaming

Extra information 19

Planning
● Upstream has to be taken into account from

requirements definition to testing and
bugfixing

● Allow for feedback times
● Allocate adequate people to the project

Extra information 20

Planning tactics
● Is this feature being worked by someone else?
● Can we join efforts?
● Can we delay part of it until upstreamed by

someone else, and then add on top?
● Communicate with upstream and nearby

projects
● Plan contingency if other projects don’t fulfill
● It’s a balancing act

Extra information 21

People allocation
● If possible, get people related to upstream
● Smooth communication is key
● Upstreaming is easier when it comes from an

existing contributor
– More experience, existing network

● If not, start building a relationship now!

Extra information 22

Planning tactics
● Be creative
● Look at the budget sheet and the calendar

– That includes release schedules
● Negotiate and then negotiate some more:

– “We work on X feature, they work on Y, and
we both get X and Y at half the cost!”

● Keep the customer on the loop
– After all, any tactic has a risk, and the

customer must be aware of it
Extra information 23

Communication with upstream
● Code does the best talk
● Quality is important
● No throwing code over the fence“ ”
● Talk is mostly in technical terms. The PM

should take a step back and let developers
take lead here

● Context helps on reviews, provide as much as
possible, within customer constraints

● Build genuine relationships, no pep talk

Extra information 24

Requirements definition
● Will this feature be accepted by upstream?
● If so, can we secure a maintainer to provide

timely feedback?
● If not, can we define it in a way to minimize

non-upstreamed patches?
– Tailor it
– Break it down
– Account for increased maintenance costs

Extra information 25

Development
● Be open about dependencies
● Keep in touch with all participants and ask for

feedback early
● Plan to have one first version that works and “ ”

integrate a correct one later after “ ”
upstreaming

● Plan for review and fix times

Extra information 26

Testing
● Consider your project and upstream testing

requirements
– Testing requirements might be steep for

upstreaming, have to be planned early
● Leverage upstream CI testbed if it exists
● Integrate early
● Fix issues promptly

Extra information 27

Communication
● Keep a close eye on what upstream is doing
● Keep the customer on the loop for relevant

features
● Be flexible with the plan, leverage the

opportunity if there is momentum for a desired
feature
– “Nothing is more powerful than an idea

whose time has come”
– Use it to our advantage

Extra information 28

Communication
● Blog about what we are doing
● Telling we are working on x feature might spur

interest from other parties
● No public relation stunts, be as transparent as

possible

Extra information 29

Retrospective
● During the project retrospective, consider the

upstreaming process
● What can be improved, what went wrong
● Go over the list of non-upstreamed patches
● Highlight the ones that are worth having

upstream

Extra information 30

What if you can’t?
● What if we can’t upstream during the project?
● Keep a list of patches
● Whatever we do, try to do it early or patches

will bitrot quickly
– That is wasted effort for everyone, not good

Extra information 31

Tactics to finish upstreaming
● Is there a sequel to the finished project?

– Can we include this effort in the new
project?

● Internal company project for upstreaming
– Slowly upstream the most relevant patches

● File and submit the patches upstream
– The attention these will receive depends

greatly on developers being available

Extra information 32

Tactics to finish upstreaming – cont.
● File and submit the patches upstream

– The attention these will receive depends
greatly on developers being available

– This is bad, but still better than let them
bitrot in a forgotten repository

Extra information 33

Examples
● Project based on Debian

– Any fix in a package is submitted directly to
Debian and then automatically fed back into
the project from Debian repository

– Upstream is part of the regular workflow, no
added cost, just a bit extra time

Extra information 34

Examples – cont.
● Android on stock Linux

– Waited for features done for ChromeOS
– Additional fixes required changes in etnaviv, Mesa,

AOSP
– Discussed with all projects and all upstreams what

was acceptable
– Worked out schedule, split out work
– Worked on our own part, supported other projects

with feedback and testing
– Big feature at 1/3 the cost

Extra information 35

Experience pays off
● Upstreaming is second nature to us
● We can quickly point out issues and get to creative

solutions
● We get contracted to upstream other companies’ work
● Good karma for everyone

Extra information 36

Some Conclusions
● Communicate up, down, and sideways
● Leverage what other projects are doing
● Upstream is a process through the whole

project
● Show value in upstreaming
● Avoid throwing code over the fence
● Keep track of patches pending to upstream

Extra information 37

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

